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Abstract

In this paper, we generalize the main result of [Mzk2] (to the effect that
very general noetherian log schemes may be reconstructed from naturally
associated categories) to the case of log schemes locally of finite type over
Zariski localizations of the ring of rational integers which are, moreover,
equipped with certain “archimedean structures”.

1. Introduction

As is discussed in the Introduction to [Mzk2], it is natural to ask to what
extent various objects — such as log schemes — that occur in arithmetic geom-
etry may be represented by categories, i.e., to what extent one may reconstruct
the original object solely from the category-theoretic structure of a category
naturally associated to the object. As is explained in loc. cit., this point of
view is partially motivated by the anabelian philosophy of Grothendieck.
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In the present paper, we extend the theory of [Mzk2], which only concerns
log schemes, to obtain a theory that proves a similar categorical representability
result [cf. Theorem 5.1 below] for what we call “arithmetic log schemes” [cf.
Definitions 4.1, 4.2 below], i.e., log schemes that are locally of finite type over a
Zariski localization of the ring of rational integers and, moreover, are equipped
with certain “archimedean structures” at archimedean primes.

In §3, we review the theory of [Mzk2], and revise the formulation of the
main theorem of [Mzk2] slightly [cf. Theorem 3.1]. In §4, we define the notion
of an archimedean structure on a fine, saturated log scheme which is of finite
type over a Zariski localization of Z. Finally, in §5, we generalize Theorem 3.1
[cf. Theorem 5.1] so as to take into account these archimedean structures.
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2. Notations and Conventions

Numbers:

We will denote by N the set (or, occasionally, the commutative monoid)
of natural numbers, by which we take to consist set of the integers n ≥ 0. A
number field is defined to be a finite extension of the field of rational numbers
Q. The field of real numbers (respectively, complex numbers) will be denoted
by R (respectively, C). The topological group of complex numbers of unit norm
will be denoted by S1 ⊆ C.

We shall say that a scheme S is a Zariski localization of Z if S = Spec(R),
where R = M−1 · Z, for some multiplicative subset M ⊆ Z.

Topological Spaces:

In this paper, the term “compact” is to be understood to include the as-
sumption that the topological space in question is Hausdorff. (The author
wishes to thank A. Tamagawa for his comments concerning the importance of
making this assumption explicit.)

Also, when a topological space H is equipped with an involution σ (typi-
cally an action of “complex conjugation”), we shall denote by

HR

(i.e., a superscript “R”) the quotient topological space of “σ-orbits”.

Categories:

Let C be a category. We shall denote the collection of objects of C by:

Ob(C)
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If A ∈ Ob(C) is an object of C, then we shall denote by

CA

the category whose objects are morphisms B → A of C and whose morphisms
(from an object B1 → A to an object B2 → A) are A-morphisms B1 → B2 in
C. Thus, we have a natural functor

(jA)! : CA → C
(given by forgetting the structure morphism to A). Similarly, if f : A → B is
a morphism in C, then f defines a natural functor

f! : CA → CB

by mapping an arrow (i.e., an object of CA) C → A to the object of CB given
by the composite C → A → B with f .

If the category C admits finite products, then (jA)! is left adjoint to the
natural functor

j∗A : C → CA

given by taking the product with A, and f! is left adjoint to the natural functor

f∗ : CB → CA

given by taking the fibered product over B with A.
We shall call an object A ∈ Ob(C) terminal if for every object B ∈ Ob(C),

there exists a unique arrow B → A in C. We shall call an object A ∈ Ob(C)
quasi-terminal if for every object B ∈ Ob(C), there exists an arrow φ : B →
A in C, and, moreover, for every other arrow ψ : B → A, there exists an
automorphism α of A such that ψ = α ◦ φ.

We shall refer to a natural transformation between functors all of whose
component morphisms are isomorphisms as an isomorphism between the func-
tors in question. A functor φ : C1 → C2 between categories C1, C2 will be called
rigid if φ has no nontrivial automorphisms. A category C will be called slim if
the natural functor CA → C is rigid, for every A ∈ Ob(C).

If C if a category and S is a collection of arrows in C, then we shall say that
an arrow A → B is minimal-adjoint to S if every factorization A → C → B of
this arrow A → B in C such that A → C lies in S satisfies the property that
A → C is, in fact, an isomorphism. Often, the collection S will be taken to be
the collection of arrows satisfying a particular property P; in this case, we shall
refer to the property of being “minimal-adjoint to S” as the minimal-adjoint
notion to P.

3. Review of the Theory for Log Schemes

We begin our discussion by reviewing the theory for log schemes developed
in [Mzk2]. Also, we give a slight extension of this theory (to the case of locally
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noetherian log schemes and morphisms which are locally of finite type). In the
context of this extension, it is natural to modify the notation used in [Mzk2]
slightly as follows:

Let us denote by

Schlog

the category of all locally noetherian fine saturated log schemes and locally finite
type morphisms, and by

NSchlog

the category of all noetherian fine saturated log schemes and finite type mor-
phisms. Note that

NSchlog ⊆ Schlog

may be characterized as the full subcategory consisting of the Xlog for which X
is noetherian.

If Xlog is a fine saturated log scheme whose underlying scheme X is locally
noetherian, then we shall write

Schlog(Xlog) def= (Schlog)Xlog

and

NSchlog(Xlog) ⊆ Schlog(Xlog)

for the full subcategory consisting of the Y log → Xlog for which Y is noetherian.
Thus, when X is noetherian, we have NSchlog(Xlog) = (NSchlog)Xlog .

To simplify terminology, we shall often refer to the domain Y log of an arrow
Y log → Xlog which is an object of Schlog(Xlog) or NSchlog(Xlog) as an “object
of Schlog(Xlog) or NSchlog(Xlog)”.

If Xlog, Y log are locally noetherian fine saturated log schemes, then denote
the set of isomorphisms of log schemes Xlog ∼→ Y log by:

Isom(Xlog, Y log)

Then the main result of [Mzk2] [cf. [Mzk2], Theorem 2.19] states that the
natural map

Isom(Xlog, Y log) → Isom(NSchlog(Y log), NSch(Xlog))

given by f log �→ NSchlog(f log) [i.e., mapping an isomorphism to the induced
equivalence between “NSchlog(−)’s”] is bijective. (Here, the “Isom” on the right
is to be understood to denote isomorphism classes of equivalences between the
two categories in parentheses.) This result generalizes immediately to the case
of “Schlog(−)”:
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Theorem 3.1. (Categorical Reconstruction of Locally Noethe-
rian Fine Saturated Log Schemes) Let Xlog, Y log be locally noetherian
fine saturated log schemes. Then the natural map

Isom(Xlog, Y log) → Isom(Schlog(Y log), Schlog(Xlog))

is bijective.

Proof. Indeed, by functoriality and [Mzk2], Theorem 2.19, it suffices to
show that the subcategory

NSchlog(Xlog) ⊆ Schlog(Xlog)

may be recovered “category-theoretically”.
To see this, let us first observe that the proof given in [Mzk2] [cf. [Mzk2],

Corollary 2.14] of the category-theoreticity of the property that a morphism in
NSchlog(Xlog) be “scheme-like” (i.e., that the log structure on the domain is the
pull-back of the log structure on the codomain) is entirely valid in Schlog(Xlog).
(Indeed, the proof essentially only involves morphisms among “one-pointed
objects”, which are the same in NSchlog(Xlog), Schlog(Xlog).) Moreover, once
one knows which morphisms are scheme-like, the open immersions may be
characterized category-theoretically as in [Mzk2], Corollary 1.3.

Next, let us first observe that the property that a collection of open im-
mersions

Y log
α → Y log

(where α ranges over the elements of some index set A) in Schlog(Xlog) be
surjective is category-theoretic. Indeed, this follows from the fact that this
collection is surjective if and only if, for any morphism Zlog → Y log, where
Zlog is nonempty, the fiber product Y log

α ×Y log Zlog in Schlog(Xlog) [cf. [Mzk2],
Lemma 2.6] is nonempty for some α [cf. also [Mzk2], Proposition 1.1, (i),
applied to the complement of the union of the images of the Y log

α ].
Thus, it suffices to observe that an object Y log is noetherian if and only if,

for any surjective collection of open immersions (in Schlog(Xlog)) Y log
α → Y log

(where α ranges over the elements of some index set A), there exists a finite
subset B ⊆ A such that the collection {Y log

β → Y log}β∈B is surjective.

Remark 1. Similar [but easier] results hold for

Sch (respectively, NSch)

— i.e., the category of all locally noetherian schemes and locally finite type
morphisms (respectively, all noetherian log schemes and finite type morphisms).
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4. Archimedean Structures

In this §, we generalize the categories defined in [Mzk2] so as to include
archimedean primes. In particular, we prepare for the proof in §5 below of a
global arithmetic analogue [cf. Theorem 5.1] of Theorem 3.1.

Let Xlog be a fine, saturated locally noetherian log scheme (with underlying
scheme X).

Definition 4.1. We shall say that X is arithmetically (locally) of finite
type if X is (locally) of finite type over a Zariski localization of Z. Similarly,
we shall say that Xlog is arithmetically (locally) of finite type if X is.

Suppose that Xlog is arithmetically locally of finite type. Then Xlog
Q

def=
Xlog ⊗Z Q is locally of finite type over Q. In particular, the set of C-valued
points

X(C)

is equipped with a natural topology (induced by the topology of C), together
with an involution σX : X(C) → X(C) induced by the complex conjugation
automorphism on C. Similarly, in the logarithmic context, it is natural to
consider the topological space

Xlog(C) def= {(x, θ) | x ∈ X(C), θ ∈ Hom(M gp
X,x, S1) (4.1)

s.t. θ(f) = f(x)/|f(x)|, ∀f ∈ O×
X,x} (4.2)

[cf. [KN], §1.2]. Here, we use the notation MX to denote the monoid that
defines the log structure of Xlog [cf. [Mzk2], §2]. Thus, we have a natural
surjection

Xlog(C) → X(C)

whose fibers are (noncanonically) isomorphic to products of finitely many copies
of S1. Also, we observe that it follows immediately from the definition that σX

extends to an involution σXlog on Xlog(C).

Definition 4.2.

(i) Let H ⊆ X(C) be a compact subset stabilized by σX . Then we shall refer to
a pair X = (X, H) as an arithmetic scheme, and H as the archimedean struc-
ture on X. We shall say that an archimedean structure H ⊆ X(C) is trivial
(respectively, total) if H = ∅ (respectively, H = X(C)).

(ii) Let H ⊆ Xlog(C) be a compact subset stabilized by σXlog . Then we
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shall refer to a pair X
log

= (Xlog , H) as an arithmetic log scheme, and H

as the archimedean structure on X
log

. We shall say that an archimedean
structure H ⊆ Xlog(C) is trivial (respectively, total) if H = ∅ (respectively,
H = Xlog(C)).

Remark 2. The idea that “integral structures at archimedean primes”
should be given by compact/bounded subsets of the set of complex valued points
may be seen in the discussion of [Mzk1], p. 9; cf. also Remark 8 below.

Remark 3. Relative to Definition 4.2, one may think of the case where
“H” is open as the case of an ind-arithmetic (log) scheme [or, alternatively,
an “ind-archimedean structure”], i.e., the inductive system of arithmetic (log)
schemes [or, alternatively, archimedean structures] determined by considering
all compact subsets that lie inside the given open.

Let us denote the category of all arithmetic log schemes by:

Sch
log

Thus, a morphism X
log

1 = (Xlog
1 , H1) → X

log

2 = (Xlog
2 , H2) in this category

is a locally finite type morphism Xlog
1 → Xlog

2 such that the induced map
Xlog

1 (C) → Xlog
2 (C) maps H1 into H2. The full subcategory of noetherian

objects of Sch
log

[i.e., objects whose underlying scheme is noetherian] will be
denoted by:

NSch
log ⊆ Sch

log

Similarly, if we forget about log structures, we obtain categories NSch, Sch.

Definition 4.3.

(i) An arithmetic (log) scheme will be called purely nonarchimedean if its
archimedean structure is trivial.

(ii) A morphism between arithmetic (log) schemes will be called purely archime-
dean if the underlying morphism between (log) schemes is an isomorphism.

Denote by

Schlog ⊆ Schlog
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the full subcategory determined by those objects which are arithmetically locally
of finite type. Then note that by considering purely nonarchimedean objects,
we obtain a natural embedding

Schlog ↪→ Sch
log

of Schlog as a full subcategory of Sch
log

.
If X

log ∈ Ob(Sch
log

), then we shall write

Sch
log

(X
log

) def= (Sch
log

)
X

log

[cf. §3] and

Sch
log

(X
log

)arch ⊆ Sch
log

(X
log

)

for the subcategory whose objects Y
log → X

log
are purely archimedean arrows

of Sch
log

. (Thus, the morphisms Y
log

1 → Y
log

2 of this subcategory are also
necessarily purely archimedean.)

On the other hand, if T is a topological space, then let us write

Open(T) (respectively, Closed(T ))

for the category whose objects are open subsets U ⊆ T (respectively, closed
subsets F ⊆ T ) and whose morphisms are inclusions of subsets of T . Thus, one
verifies easily (by taking complements!) that Closed(T ) is the opposite category
Open(T)opp associated to Open(T). Also, let us write

Shv(T )

for the category of sheaves on T (valued in sets).
Now we have the following:

Proposition 4.1. (Conditional Reconstruction of the Archime-
dean Topological Space)

(i) If H is the archimedean structure on X
log

, then the functor

Sch
log

(X
log

)arch → Closed(HR) ( ∼→ Open(HR)opp)

[cf. §2 for more on the superscript “R”] given by assigning to an arrow Y
log →

X
log

the image of the archimedean structure of Y
log

in HR ⊆ Xlog(C)R is an
equivalence.

(ii) Let X
log

1 , X
log

2 ∈ Ob(Sch
log

). Suppose that

Φ : Sch
log

(X
log
1 ) ∼→ Sch

log
(X

log
2 )
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is an equivalence of categories that preserves purely archimedean arrows
(i.e., an arrow f in Sch

log
(X

log

1 ) is purely archimedean if and only if Φ(f)
is purely archimedean). Then one can construct, for every object Y

log

1 =
(Y log

1 , K1) ∈ Ob(Sch
log

(X
log

1 )) that maps via Φ to an object Y
log

2 = (Y log
2 , K2) ∈

Ob(Sch
log

(X
log

2 )), a homeomorphism

KR
1

∼→ KR
2

which is functorial in Y log
1 .

Proof. Assertion (i) is a formal consequence of the definitions. To prove
assertion (ii), let us first observe that (for an arbitrary topological space T )
Shv(T ) may be reconstructed functorially from Open(T), since coverings of
objects of Open(T) may be characterized as collections of objects whose in-
ductive limit (a purely categorical notion!) is isomorphic to the object to be
covered. Thus, our assumption on Φ, together with assertion (i), implies that
(for i = 1, 2) Shv(KR

i ) may be reconstructed category-theoretically from Y log
i

in a fashion which is functorial in Y log
i . Moreover, since KR

i is clearly a sober
topological space, we thus conclude [by a well-known result from “topos the-
ory” — cf., e.g., [Mzk2], Theorem 1.4] that the topological space KR

i itself may
be reconstructed category-theoretically from Y log

i in a fashion which is functorial
in Y log

i , as desired.

Before proceeding, we observe the following:

Lemma 4.1. (Finite Products of Arithmetic Log Schemes) The
category Sch

log
admits finite products.

Proof. Indeed, if, for i = 1, 2, 3, we are given objects X
log

i = (Xlog
i , Hi) ∈

Ob(Sch
log

) and morphisms Xlog
1 → Xlog

2 , Xlog
3 → Xlog

2 in Sch
log

, then we may
form the product of Xlog

1 , Xlog
3 over Xlog

2 by equipping the log scheme

Xlog
1 ×Xlog

2
Xlog

3

(which is easily seen to be arithmetically locally of finite type) with the archimedean
structure given by the inverse image of

H1 ×H2 H3 ⊆ Xlog
1 (C) ×Xlog

2 (C) Xlog
3 (C)
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(where we note that H1 ×H2 H3 is compact, since H2 is Hausdorff) via the
natural map:

(Xlog
1 ×Xlog

2
Xlog

3 )(C) → Xlog
1 (C) ×Xlog

2 (C) Xlog
3 (C)

Note that this last map is proper [i.e., inverse images of compact sets are com-
pact], since, for any Y log which is arithmetically locally of finite type, the map
Y log(C) → Y (C) is proper, and, moreover, the map induced on C-valued points
of underlying schemes by

Xlog
1 ×Xlog

2
Xlog

3 → X1 ×X2 X3

[i.e., where the domain is equipped with the trivial log structure] is finite [cf.
[Mzk2], Lemma 2.6], hence proper.

Thus, if X
log

, Y
log ∈ Ob(Sch

log
), then any morphism X

log → Y
log

in Sch
log

induces a natural functor

Sch
log

(Y
log

) → Sch
log

(X
log

)

(by sending an object Z
log → Y

log
to the fibered product Z

log×
Y

logX
log → X

log

— cf. the discussion of §2).
Next, we would like to show, in the following discussion [cf. Corollary 4.1,

(ii) below], that the hypothesis of Proposition 4.1, (ii), is automatically satisfied.
Let X

log ∈ Ob(Sch
log

).

Proposition 4.2. (Minimal Objects) An object Y
log

of Sch
log

(X
log

)
will be called minimal if it is nonempty and satisfies the property that any
monomorphism Z

log � Y
log

(where Z
log

is nonempty) in Sch
log

(X
log

) is nec-
essarily an isomorphism. An object Y

log
of Sch

log
(X

log
) is minimal if and

only if it is purely nonarchimedean and log scheme-theoretically mini-
mal [i.e., the underlying object Y log of Schlog(Xlog) is minimal as an object of
Sch(Xlog) — cf. [Mzk2], Proposition 2.4].

Proof. The sufficiency of this condition is clear, since the domain of any
morphism in Sch

log
to a purely nonarchimedean object is necessarily itself

purely nonarchimedean [i.e., no nonempty set maps to an empty set]. That
this condition is necessary is evident from the definitions (e.g., if a nonempty
object fails to be purely nonarchimedean, then it can always be “made smaller”
[but still nonempty!] by setting the archimedean structure equal to the empty
set, thus precluding “minimality”).
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Proposition 4.3. (Characterization of One-Pointed Objects) We
shall call an object of Sch

log
one-pointed if the underlying topological space

of its underlying scheme consists of precisely one point. The one-pointed ob-
jects Y

log
of Sch

log
(X

log
) may be characterized category-theoretically as the

nonempty objects which satisfy the following property: For any two morphisms
S

log

i → Y
log

(for i = 1, 2), where S
log

i is a minimal object, the product
S

log
1 ×

Y
log S

log
2 (in Sch

log
(X

log
)) is nonempty.

Proof. This is a formal consequence of the definitions; Proposition 4.2;
and [Mzk2], Corollary 2.9.

Proposition 4.4. (Minimal Hulls) Let Y
log

be a one-pointed ob-
ject of the category Sch

log
(X

log
). Then a monomorphism Z

log � Y
log

will be
called a hull for Y

log
if every morphism S

log → Y
log

from a minimal object
S

log
to Y

log
factors (necessarily uniquely!) though Z

log
. A hull Z

log � Y
log

will be called a minimal hull if every monomorphism Z
log
1 � Z

log
for which

the composite Z
log
1 � Y

log
is a hull is necessarily an isomorphism. A one-

pointed object Z
log

will be called a minimal hull if the identity morphism
Z

log → Z
log

is a minimal hull for Z
log

.

(i) An object Y
log

of Sch
log

(X
log

) is a minimal hull if and only if it is purely
nonarchimedean and log scheme-theoretically a minimal hull [i.e., the
underlying object Y log of Schlog(Xlog) is a minimal hull in the sense of [Mzk2],
Proposition 2.7; cf. also [Mzk2], Corollary 2.10].

(ii) Any two minimal hulls of an object Y
log ∈ Ob(Sch

log
(X

log
)) are isomor-

phic (via a unique isomorphism over Y
log

).

(iii) If Y
log

1 ∈ Ob(Sch
log

(X
log

1 )), Y
log

2 ∈ Ob(Sch
log

(X
log

2 )), and

Φ : Sch
log

(X
log
1 ) ∼→ Sch

log
(X

log
2 )

is an equivalence of categories such that Φ(Y log
1 ) = Y

log

2 , then Y
log

1 is a
minimal hull if and only if Y log

2 is. That is to say, the condition that an object
Y

log ∈ Ob(Sch
log

(X
log

)) be a minimal hull is “category-theoretic”.

Proof. Assertion (i) (respectively, (ii); (iii)) is a formal consequence of
Proposition 4.2 (respectively, assertion (i); Proposition 4.3) [and the definitions
of the terms involved].
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Proposition 4.5. (Purely Archimedean Morphisms of Reduced
One-Pointed Objects) Let Y

log ∈ Ob(Sch
log

(X
log

)) be one-pointed; let Z
log �

Y
log

be a minimal hull which factors as a composite of monomorphisms
Z

log � Z
log

1 � Y
log

. Then the following are equivalent:

(i) Z
log
1 is reduced.

(ii) Z
log → Z

log
1 is purely archimedean.

(iii) Z
log → Z

log

1 is an epimorphism in Sch
log

(Z
log

1 ) [i.e., two sections Z
log

1 →
S

log
of a morphism S

log → Z
log
1 coincide if and only if they coincide after re-

striction to Z
log

].

Proof. The equivalence of (i), (ii) is a formal consequence of [Mzk2],
Proposition 2.3; [Mzk2], Proposition 2.7, (ii), (iii); [Mzk2], Corollary 2.10. That
(ii) implies (iii) is a formal consequence of the definitions. Finally, that (iii)
implies (i) follows, for instance, by taking S

log → Z
log

1 to be the projective line
over Z

log

1 (so sections that lies in the open sub-log scheme of Slog determined
by the affine line correspond to elements of Γ(Z1,OZ1)). (Here, we equip the
projective line with the archimedean structure which is the inverse image of
the archimedean structure of Z

log

1 .)

Note that condition (iii) of Proposition 4.5 is “category-theoretic”. This
implies the following:

Corollary 4.1. (Characterization of Purely Nonarchimedean One-
Pointed Objects and Purely Archimedean Morphisms)

(i) A one-pointed object Y
log ∈ Ob(Sch

log
(X

log
)) is purely nonarchimedean

if and only if it satisfies the following “category-theoretic” condition: Every
minimal hull Z

log � Y
log

is minimal-adjoint [cf. §2] to the collection of
arrows Z

log → Z
log

1 which satisfy the equivalent conditions of Proposition 4.5.

(ii) A morphism ζ : Y
log → Z

log
in Sch

log
(X

log
) is purely archimedean if

and only if it satisfies the following “category-theoretic” condition: The mor-
phism ζ is a monomorphism in Sch

log
(X

log
), and, moreover, for every mor-

phism φ : S
log → Z

log
in Sch

log
(X

log
), where S

log
is one-pointed and purely

nonarchimedean, there exists a unique morphism ψ : S
log → Y

log
such that

φ = ζ ◦ ψ.
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Proof. Assertion (i) is a formal consequence of Proposition 4.5 [and the
definitions of the terms involved]. As for assertion (ii), the necessity of the con-
dition is a formal consequence of the definitions of the terms involved. To prove
sufficiency, let us first observe that by [Mzk2], Lemma 2.2; [Mzk2], Proposition
2.3, it follows from this condition that the underlying morphism of log schemes
Y log → Zlog is scheme-like [i.e., the log structure on Y log is the pull-back of the
log structure on Zlog]. Thus, this condition implies that the underlying mor-
phism of schemes Y → Z is smooth [cf. [Mzk2], Corollary 1.2] and surjective.
But this implies [cf. [Mzk2], Corollary 1.3] that Y → Z is a surjective open
immersion, hence that it is an isomorphism of schemes. Since Y log → Zlog

is scheme-like, we thus conclude that Y log → Zlog is an isomorphism of log
schemes, as desired.

Thus, Corollary 4.1, (ii), implies that the hypothesis of Proposition 4.1 is
automatically satisfied. This allows us to conclude the following:

Corollary 4.2. (Unconditional Reconstruction of the Archime-
dean Topological Space) The R-superscripted topological space determined
by the ar-chimedean structure on an object Y

log ∈ Ob(Sch
log

(X
log

)) may be
reconstructed category-theoretically in a fashion which is functorial in Y

log

[cf. Proposition 4.1, (ii)]. In particular, the condition that Y
log

be purely
nonarchimedean is category-theoretic in nature.

Corollary 4.3. (Reconstruction of the Underlying Log Scheme)
The full subcategory

Schlog(Y log) ⊆ Sch
log

(Y
log

) = Sch
log

(X
log

)
Y

log

[i.e., consisting of arrows Z
log → Y

log
for which Z

log
is purely nonarchimedean]

associated to an object Y
log ∈ Ob(Sch

log
(X

log
)) is a category-theoretic in-

variant of the data (Sch
log

(X
log

), Y
log ∈ Ob(Sch

log
(X

log
))). In particular, [cf.

Theorem 3.1] the underlying log scheme Y log associated to Y
log

may be recon-
structed category-theoretically from this data in a fashion which is functo-
rial in Y

log
.

Remark 4. Thus, by Corollary 4.3, one may functorially reconstruct
the underlying log scheme Y log of an object Y

log
= (Y log, K) ∈ Ob(Sch

log
(X

log
)),

hence the topological space Y log(C) from category-theoretic data. On the
other hand, by Corollary 4.2, one may also reconstruct the topological space
KR (⊆ Y log(C)R). Thus, the question arises:
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Is the reconstruction of KR via Corollary 4.2 compatible with the
reconstruction of Y log(C)R via Corollary 4.3?

More precisely, given objects X
log

1 , X
log

2 ∈ Ob(Sch
log

); objects

Y
log
1 = (Y log

1 , K1) ∈ Ob(Sch
log

(X
log
1 )); Y

log
2 = (Y log

2 , K2) ∈ Ob(Sch
log

(X
log
2 ))

and an equivalence of categories

Φ : Sch
log

(X
log

1 ) ∼→ Sch
log

(X
log

2 )

such that Φ(Y
log
1 ) = Y

log
2 , we wish to know whether or not the diagram

KR
1

∼→ KR
2⏐

⏐
�

⏐
⏐
�

Y log
1 (C)R ∼→ Y log

2 (C)R

— where the vertical morphisms are the natural inclusions; the upper horizontal
morphism is the homeomorphism arising from Corollary 4.2; and the lower
horizontal morphism is the homeomorphism arising by taking “C-valued points”
of the isomorphism of log schemes obtained in Corollary 4.3 — commutes. This
question will be answered in the affirmative in Lemmas 5.1, 5.2 below.

Definition 4.4. In the notation of Remark 4, let us suppose that X
log
1 ,

Y
log
1 are fixed. Then:

(i) If the diagram of Remark 4 commutes for all X
log

2 , Y
log

2 , Φ as in Remark 4,

then we shall say that Y
log
1 is (logarithmically) globally compatible.

(ii) If the composite of the diagram of Remark 4 with the commutative diagram

Y log
1 (C)R ∼→ Y log

2 (C)R
⏐
⏐
�

⏐
⏐
�

Y1(C)R ∼→ Y2(C)R

commutes for all X
log

2 , Y
log

2 , Φ as in Remark 4, then we shall say that Y
log

1 is
nonlogarithmically globally compatible.

5. The Main Theorem

In the following discussion, we complete the proof of the main theorem of
the present paper by showing that the archimedean and scheme-theoretic data
reconstructed in Corollaries 4.2, 4.3 are compatible with one another.
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Definition 5.1. We shall say that an object S
log

of Sch
log

is a test
object if its underlying scheme is affine, connected, and normal, and, moreover,
the R-superscripted topological space determined by its archimedean structure
consists of precisely one point.

Note that by Corollaries 4.2, 4.3, the notion of a “test object” is “category-
theoretic”.

Lemma 5.1. (Nonlogarithmic Global Compatibility) Let X
log

be
an object in Sch

log
. Then every object S

log ∈ Ob(Sch
log

(X
log

)) is nonloga-
rithmically globally compatible.

Proof. By the functoriality of the diagram discussed in Remark 4, it fol-
lows immediately that it suffices to prove the nonlogarithmic global compati-
bility of test objects S

log
= (Slog, HS). Since S is assumed to be affine, write

S = Spec(R). Then we may think of the single point of HR
S as defining an

“archimedean valuation” vR on the ring R.
Write

Y
log

= (Y log, HY ) → S
log

= (Slog , HS)

for the projective line over S
log

, equipped with the log structure obtained by
pulling back the log structure of Slog and the archimedean structure which is the
inverse image of the archimedean structure of S

log
. Note that this archimedean

structure may be characterized “category-theoretically” [cf. Corollaries 4.2, 4.3]
as the archimedean structure which yields a quasi-terminal object [cf. §2] in the
subcategory of Sch

log
(S

log
) consisting of purely archimedean morphisms among

objects with underlying log scheme isomorphic (over Slog) to Y log.
Next, let us observe that to reconstruct the log scheme Slog via Corollary

4.3 amounts, in effect, to applying the theory of [Mzk2]. Moreover, in the theory
of [Mzk2], the set underlying the ring R = Γ(S,OS) is reconstructed as the set
of sections S

log → Y
log

that avoid the ∞-section (of the projective line Y ).
Moreover, the topology determined on R by the “archimedean valuation” vR

is precisely the topology on this set of sections determined by considering the
induced sections HR

S → HR
Y [i.e., two sections S

log → Y
log

are “close” if and
only if their induced sections HR

S → HR
Y are “close”]. Thus, we conclude (via

Corollary 4.2) that this topology on R is a “category-theoretic invariant”.
On the other hand, it is immediate that the point R → C (considered up to

complex conjugation) determined by HR
S may be recovered from this topology

— i.e., by “completing” with respect to this topology. This completes the proof
of the asserted nonlogarithmic global compatibility.
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Lemma 5.2. (Logarithmic Global Compatibility) Let X
log

be an
object in Sch

log
. Then every object S

log ∈ Ob(Sch
log

(X
log

)) is globally com-
patible.

Proof. The proof is entirely similar to the proof of Lemma 5.1. In par-
ticular, we reduce immediately to the case where S

log
is a test object. Since,

by Corollary 4.3, the structure of the underlying log scheme Slog is already
known to be category-theoretic, we may even assume, without loss of general-
ity, that the monoid MS is generated by its global sections. This time, instead
of considering Y

log
, we consider the object

Z
log

= (Zlog, HZ) → S
log

= (Slog , HS)

obtained by “appending” to the log structure of Y log the log structure deter-
mined by the divisor given by the zero section (of the projective line Y ). As in
the case of Y

log
, we take the archimedean structure on Z

log
to be the inverse

image of the archimedean structure of S
log

. Also, just as in the case of Y
log

,
this archimedean structure may be characterized category-theoretically.

Now if we think of the unique point in HR
S as a pair (up to complex

conjugation) (s, θ) [cf. the discussion preceding Definition 4.2], then it remains
to show that θ may be “recovered category-theoretically”. To this end, let us
first recall that s ∈ S(C) determines a morphism Spec(C) → S with respect to
which one may pull-back the log structure on S to obtain a log structure on
Spec(C). By Lemma 5.1, we may also assume, without loss of generality, that
S is “sufficiently [Zariski] local with respect to s” in the sense that the image
of Γ(S,O×

S ) in C is dense. Moreover, this log structure on Spec(C) amounts to
the datum of a monoid

MS,s

containing the unit circle S1 ⊆ C. Thus, relative to this notation, θ [cf. the dis-
cussion preceding Definition 4.2] may be thought of as the datum of a surjective
homomorphism

θ : Mgp
S,s � S1

[where surjectivity follows from the fact that this homomorphism restricts to
the identity on S1 ⊆ Mgp

S,s]. In fact, since θ is required to restrict to the identity
on S1 ⊆ MS,s ⊆ Mgp

S,s, it follows that the surjection θ is completely determined
by its kernel. Thus, in summary, θ may be thought of as being the datum of
a certain quotient of the group Mgp

S,s, or, indeed, as a certain quotient of the
monoid MS,s.

Next, let us recall [cf. the proof of Lemma 5.1] that in the theory of
[Mzk2][cf. the discussion preceding [Mzk2], Lemma 2.16], the set

Γ(S, MS)
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is reconstructed as the set of sections S
log → Z

log
that avoid the ∞-section (of

the projective line Z). Observe that [just as in the proof of Lemma 5.1] this
set of sections is equipped with a natural topology determined by the induced
sections HR

S → HR
Z — i.e., two sections S

log → Z
log

are “close” if and only if
their induced sections HR

S → HR
Z are “close”. Thus, from the point of view of

elements of Γ(S, MS), two elements of Γ(S, MS) are “close” if and only if their
images under the composite of the natural morphism Γ(S, MS) → Mgp

S,s with
the surjection θ are “close”. In particular, if we denote by

Γ(S, MS)θ

the completion of the set Γ(S, MS) with respect to this [not necessarily sep-
arated] topology, then it follows immediately [from our assumption that S is
“sufficiently [Zariski] local with respect to s”] that the image of Γ(S,O×

S ) ⊆
Γ(S, MS) in this completion may be identified with S1. Since, moreover, se-
quences of elements of Γ(S, MS) that converge to elements of MS,s that lie in
the kernel of θ clearly map to 0 in the completion Γ(S, MS)θ, we conclude that
the closure of the image of Γ(S,O×

S ) in Γ(S, MS)θ [which may be identified
with a copy of S1] is, in fact, equal to Γ(S, MS)θ, and, moreover, that relative
to this identification of Γ(S, MS)θ with S1, the natural completion morphism

Γ(S, MS) → Γ(S, MS)θ = S1

may be identified with the composite of the natural morphism Γ(S, MS) →
Mgp

S,s with θ. That is to say, [in light of our assumption that the monoid
MS is generated by its global sections] the kernel of θ, hence θ itself, may be
recovered from the following data: the log scheme Slog [as reconstructed in
[Mzk2]], together with the topology considered above on Γ(S, MS). Since this
topology is “category-theoretic” by Corollary 4.2, this completes the proof of
Lemma 5.2.

We are now ready to state the main result of the present §, i.e., the following
global arithmetic analogue of Theorem 3.1:

Theorem 5.1. (Categorical Reconstruction of Arithmetic Log
Schemes) Let X

log
, Y

log
be arithmetic log schemes. Then the categories

Sch
log

(Y
log

), Sch
log

(X
log

) are slim [cf. §2], and the natural map

Isom(X
log

, Y
log

) → Isom(Sch
log

(Y
log

), Sch
log

(X
log

))

is bijective.

Proof. Indeed, this is a formal consequence of Corollaries 4.2, 4.3; Lemma
5.2; [Mzk2], Theorem 2.20.
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Remark 5. The natural map of Theorem 5.1 is obtained by considering
the natural functors mentioned in the discussion following Lemma 4.1.

Remark 6. Of course, similar [but easier!] arguments yield the ex-
pected versions of Theorem 5.1 for NSch

log
, Sch, NSch:

(i) If X
log

, Y
log

are noetherian arithmetic log schemes, then the categories
NSch

log
(Y

log
), NSch

log
(X

log
) are slim, and the natural map

Isom(X
log

, Y
log

) → Isom(NSch
log

(Y
log

), NSch
log

(X
log

))

is bijective.

(ii) If X, Y are arithmetic schemes, then the categories Sch(Y ), Sch(X)
are slim, and the natural map

Isom(X, Y ) → Isom(Sch(Y ), Sch(X))

is bijective.

(iii) If X , Y are noetherian arithmetic schemes, then the categories NSch(Y ),
NSch(X) are slim, and the natural map

Isom(X, Y ) → Isom(NSch(Y ), NSch(X))

is bijective.

Example 5.1. (Arithmetic Vector Bundles)

(i) Let F be a number field; denote the associated ring of integers by OF ;

write S
def= Spec(OF ). Equip S with the archimedean structure given by the

whole of S(C); denote the resulting arithmetic scheme by S. Let E be a vector
bundle on S. Write V → S for the result of blowing up the associated geometric
vector bundle along its zero section; denote the resulting exceptional divisor [i.e.,
the inverse image of the zero section via the blow-up morphism] by D ⊆ V .
If E is equipped with a Hermitian metric at each archimedean prime (up to
complex conjugation) of F , then, by taking the “archimedean structure” on
V to be the complex-valued points of V that correspond to sections of E with
norm (relative to this Hermitian metric) ≤ 1 [hence include the complex-valued
points of D], we obtain an arithmetic scheme V over S. Now suppose that S
is equipped with a log structure defined by some finite set Σ of closed points
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of S; denote the resulting arithmetic log scheme by S
log

. Equip V with the
log structure obtained by “appending” to the log structure pulled back from
Slog the log structure determined by the divisor D ⊆ V . Thus, we obtain a
morphism of arithmetic log schemes:

V
log → S

log

The sections S
log → V

log
of this morphism correspond naturally to the ele-

ments of Γ(S, E) which are nonzero away from Σ and have norm ≤ 1 at all the
archimedean primes.

(ii) For i = 1, 2, let V
log

i → S
log

i be constructed as in (i) above. Then (by
Theorem 5.1) the isomorphism classes of equivalences of categories

Sch
log

(V
log

1 ) ∼→ Sch
log

(V
log

2 )

correspond naturally to the following data: an isometric isomorphism of vector
bundles E1

∼→ E2 lying over an isomorphism of log schemes Slog
1

∼→ Slog
2 .

(iii) We shall refer to a subset

A ⊆ C

as an angular region if there exists a ρ ∈ R>0 [where R>0 ⊆ R is the subset
of real numbers > 0] and a subset AS1 ⊆ S1 ⊆ C such that A = {λ · u | λ ∈
[0, ρ], u ∈ AS1}. We shall say that the angular region A is open (respectively,
closed; isotropic) [i.e., as an angular region] if the subset AS1 ⊆ S1 is open
(respectively, closed; equal to S1); we shall refer to ρ as the radius of the
angular region A. Thus, if we write

Ang(C) def= C×/R>0

[so the natural composite S1 ↪→ C � Ang(C) is a homeomorphism], then the
projection

Ang(A) ⊆ Ang(C)

of A [i.e., A\{0}] to Ang(C) ∼= S1 is simply A1
S. Note that the notion of an an-

gular region (respectively, open angular region; closed angular region; Ang(−);
radius of an angular region) extends immediately to the case where “C” is
replaced by an an arbitrary 1-dimensional complex vector space (respectively,
vector space; vector space; vector space; vector space equipped with a Hermi-
tian metric).

In particular, in the notation of (i), when E is a line bundle, the choice
of a(n) closed (respectively, open) angular region of radius 1 at each of the
complex archimedean primes of F determines a(n) (ind-)archimedean structure
[cf. Remark 3] on V log. Thus, the (ind-)arithmetic log schemes discussed in (i)
correspond to the case where all of the angular regions chosen are isotropic.
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Remark 7. When the vector bundle E of Example 5.1 is a line bundle
[i.e., of rank one], the blow-up used to construct V is an isomorphism. That is
to say, in this case, V is simply the geometric line bundle associated to E , and
D ⊆ V is its zero section.

Remark 8. Some readers may wonder why, in Definition 4.2, we took
H to be a compact set, as opposed to, say, an open set (or, perhaps, an open set
which is, in some sense, “bounded”). One reason for this is the following: If H
were required to be open, then we would be obliged, in Example 5.1, to take the
“archimedean structure” on V to be the open set defined by sections of norm
< 1. In particular, if E is taken to be the trivial line bundle, then it would
follow that the section of V defined by the section “1” of the trivial bundle
would fail to define a morphism in the “category of arithmetic log schemes” —
a situation which the author found to be unacceptable.

Another motivating reason for Definition 4.2 comes from rigid geometry:
That is to say, in the context of rigid geometry, perhaps the most basic example
of an integral structure on the affine line Spec(Qp[T ]) is that given by the ring

Zp[T ]∧

(where the “∧” denotes p-adic completion). Then the continuous homomor-
phisms Zp[T ]∧ → Cp [i.e., the “Cp-valued points of the integral structure”]
correspond precisely to the elements of Cp with absolute value ≤ 1.

Remark 9. If S
def= Spec(OF ) [where OF is the ring of integers of a

number field F ], and we equip S with the log structure associated to the chart
N � 1 �→ 0 ∈ OS , then an archimedean structure on Slog is not the same as
a choice of Hermitian metrics on the trivial line bundle over OS at various
archimedean primes of S. This is somewhat counter-intuitive, from the point
of view of the usual theory of log schemes. More generally:

The definition of an archimedean structure [cf. Definition 4.2] adopted
in this paper is perhaps not so satisfactory when one wishes to con-
sider the archimedean aspects of log structures or other infinitesimal
deformations (e.g., nilpotent thickenings) in detail.

For instance, the possible choices of an archimedean structure are invariant with
respect to nilpotent thickenings. Thus, depending on the situation in which one
wishes to apply the theory of the present paper, it may be desirable to modify
Definition 4.2 so as to deal with archimedean structures on log structures or
nilpotent thickenings in a more satisfactory matter — perhaps by making use of
the constructions of Example 5.1 [including “angular regions”!], applied to the
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various line bundles or vector bundles that form the log structures or nilpotent
thickenings under consideration.

At the time of writing, however, it is not clear to the author how to con-
struct such a theory. Indeed, many of the complications that appear to arise if
one is to construct such a theory seem to be related to the fact that archimedean
(integral) structures, unlike their nonarchimedean counterparts, typically fail to
be closed under addition. Since, however, such a theory is beyond the scope of
the present paper, we shall not discuss this issue further in the present paper.
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